If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-35=1764
We move all terms to the left:
4x^2-35-(1764)=0
We add all the numbers together, and all the variables
4x^2-1799=0
a = 4; b = 0; c = -1799;
Δ = b2-4ac
Δ = 02-4·4·(-1799)
Δ = 28784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28784}=\sqrt{16*1799}=\sqrt{16}*\sqrt{1799}=4\sqrt{1799}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1799}}{2*4}=\frac{0-4\sqrt{1799}}{8} =-\frac{4\sqrt{1799}}{8} =-\frac{\sqrt{1799}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1799}}{2*4}=\frac{0+4\sqrt{1799}}{8} =\frac{4\sqrt{1799}}{8} =\frac{\sqrt{1799}}{2} $
| 9+3a-4=20-15 | | -19-19u=15-7u-10u | | 10x-7x=5+8x-2x | | -14x-15x=-6-3x | | 18x-10x=6+3x | | -2.5=2-0.1p | | -10=-4÷2x | | d/9+34=41 | | 16x-10=5x+6x-3x+6 | | (v-7)^2=2v^2-11v+45 | | 1/(c-6)=-5/2c+9 | | 5x+3=x=-10 | | 18+19r=-18+17r | | 9-3x-5-3×=7 | | 12x+3x-2x=6+18-13x | | 18+19r=18+17r | | 1/2(c-6)=-5/2c+9 | | 3x+9x-5x-6=3x-6x+10 | | 2x+5+3x=-2x+9 | | 5x=38-4.9x^2 | | 3(x-1/2)=5(x+7/ | | 3x+9x-5x-6=6x=10 | | -8+9z=-7+8z-8 | | 10(r-86)=60 | | 2*t^2+3*t-10=0 | | X^2-2x-122=0 | | r-33/6=60 | | 5x-(x+1)=5-x | | 5x+3=x-0 | | 11x-9x=5+2x-3 | | 6(c+4)=90 | | 1.02x=1,5 |